Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Takayoshi Mamiya, Keiko Morikawa, Mitsuo Kise
We previously reported that the continuous feeding of mice with pellets of pregerminated brown rice (PGBR; Hatsuga genmai in Japanese) enhances their spatial learning. Here, we show the possible relationships of the enhancement of learning and memory with the glutamatergic system in the brain of PGBR-pellet-fed mice. The enhancement of learning and memory in the novel object recognition and Y-maze tests after 28-day-feeding of PGBR pellets was inhibited by dizocilpine (10 μg/kg s.c.), an N-methyl-D-aspartate (NMDA) receptor antagonist, whereas the extracellular glutamate level and the glutamate content were not affected in the frontal cortex and hippocampus. In the frontal cortex of mice fed PGBR pellets, the phosphorylation of calcium calmodulin kinase IIα (CaMKIIα), one of the important events after NMDA receptor activation, was facilitated compared with that of mice fed control pellets. This facilitation was inhibited by dizocilpine (10 μg/kg s.c.), whereas the phosphorylation of extracellular signal-regulated protein kinases (ERKs), another index of memory formation was not affected by PGBR pellets. On the other hand, in the hippocampus, there was no significant difference in the phosphorylation of CaMKIIα and ERKs between the control and PGBR pellets-fed mice. Taken together, these results suggest that PGBR enhances the NMDA receptor/CaMKIIα signaling in the frontal cortex, leading to enhanced learning and memory in mice.