Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

New Active Substrates (ASs) Could Be Used to Stop Heavy Metals from Migrating to the Soil and Water Environments

Ruth Mary

An alternative to the well-known reactive permeable barriers (PRBs) is the objective of this paper. Using a reactive barrier below the ground known as PRB is one method for cleaning up contaminated groundwater. New polymer active substrates (ASs) were used to prevent hazardous heavy metals from entering the soil. On the skeleton material (fiberglass or textile), aliquat 336, bis(2-ethylhexyl)adipate, and polyvinyl chloride were utilized as the active substrates. Aliquat 336 bound the metal ions Cr(VI), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II). In contrast to the PRBs, the ASs were straightforward to obtain through pouring. The obtained ASs can be recycled and reused. The active substrates were bound to the study soil and a variety of metal ions from aqueous solutions. The active substrate was found to have reduced the concentrations of nickel, cadmium, lead, and chromium in the aqueous solution by more than 50% and more than 90%, respectively. Additionally, the use of revealed that the metals zinc and chromium had a high sorption efficiency of 81% and 66%, respectively, which restricted their movement from the soil to the water. In soil, the best combination of active substrate and plasticizer was the most efficient. This solution reduced copper, lead, and cadmium by more than 70% and by at least 50% for each tested metal ion.