Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Sandip Sen, N.A.Farooqui , T.S.Easwari, Bishwabara Roy
Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in certain positions of the drug molecules. The detailed discussion of the present state of the art should enable scientists to further develop and improve these powerful new tools. Comparative Molecular Field Analysis (CoMFA) is a mainstream and down-toearth 3D QSAR technique in the coverage of drug discovery and development. Even though CoMFA is remarkable for high predictive capacity, the intrinsic data-dependent characteristic still makes this methodology certainly be handicapped by noise. It's well known that the default settings in CoMFA can bring about predictive QSAR models, in the meanwhile optimized parameters was proven to provide more predictive results. Accordingly, so far numerous endeavors have been accomplished to ameliorate the CoMFA model’s robustness and predictive accuracy by considering various factors, including molecular conformation and alignment, field descriptors and grid spacing. In the present article we are going to discuss the basic approaches of CoMFA in drug design.