ISSN: 2167-065X

Pharmacologie clinique et biopharmaceutique

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Advancements in Clinical Trials Databases: Bridging the Gap between Science and Patient Care

Hada Noriyasu

Clinical trials are fundamental to the advancement of medical science and the development of innovative treatments. The management and accessibility of data generated from these trials play a pivotal role in translating research findings into improved patient care. This abstract provides an overview of the key advancements in clinical trials databases and their role in bridging the gap between scientific discovery and patient care. Historically, clinical trials data were dispersed across various sources, making it challenging for researchers, clinicians, and regulatory bodies to access, analyze, and interpret information effectively. However, recent years have witnessed significant advancements in the way clinical trials data are collected, stored, and shared. These innovations have greatly enhanced the transparency, efficiency, and utility of clinical trials databases. Artificial intelligence (AI) and machine learning (ML) algorithms have revolutionized data analysis in clinical trials. These technologies can identify trends, predict outcomes, and identify potential safety issues more rapidly than traditional methods. AI-driven platforms assist in patient stratification, optimizing trial design, and personalizing treatment regimens, ultimately leading to more effective therapies. Advancements in clinical trials databases have revolutionized the landscape of medical research and patient care. The integration of EDC systems, blockchain technology, AI/ML, and patient-centric approaches has streamlined the clinical trials process, resulting in faster drug development and improved patient outcomes. These innovations hold great promise for bridging the gap between science and patient care, ushering in a new era of precision medicine and therapeutic breakthroughs.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.