Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Zearalenone Induced Cytotoxicity and Oxidative Stress in Human Peripheral Blood Leukocytes

Martha Josefina Viera-Limón, Jesús Antonio Morlett-Chávez, Crystel Aleyvick Sierra-Rivera, Diana Luque-Contreras and Alejandro Zugasti-Cruz

Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by a variety of Fusarium fungi that are commonly found in feed. ZEA cause reproductive disorders of farm animals and occasionally hyperoestrogenic syndromes of humans; also, has been shown to be hepatotoxic, genotoxic, hematotoxic and immunotoxic, evidence primarily based on studies with different biological models in vitro and in vivo in poultry and laboratory rodents. However, there is little knowledge about of the effects of ZEA in human leukocytes.

Objective: The aim of this study was to investigate the cell viability and lipid peroxidation effects caused by ZEA in human peripheral blood leukocytes.

Methods: Human leukocytes were exposed in vitro with ZEA in concentrations ranging from 10 to 80 μg/mL during 1 h of incubation. Cell viability was measured by staining with trypan blue and neutral red assays, and lipid peroxidation was evaluated by the amount of the lipid peroxidation product, malondialdehyde (MDA).

Results: ZEA significantly decreased the cell viability in human leukocytes with concentrations ranging from 10 μg/mL to 80 μg/mL. Also, we found significant increases of MDA levels in the cells exposed to concentrations between 40 and 80 μg/mL.

Conclusion: The data suggest that lipid peroxidation is involved in the citotoxicity of ZEA in human leukocytes.