ISSN: 2157-7617

Journal des sciences de la Terre et du changement climatique

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Indice source CAS (CASSI)
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Accès en ligne à la recherche en environnement (OARE)
  • Ouvrir la porte J
  • JournalSeek de génamique
  • JournalTOC
  • Annuaire des périodiques d'Ulrich
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Centre international pour l'agriculture et les biosciences (CABI)
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Invocation de quête
  • Catalogue en ligne SWB
  • Publons
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Using Hyperspectral Data to Identify Crops in a Cultivated Agricultural Landscape-A Case Study of Taita Hills, Kenya

Boitt M, Ndegwa C and Pellikka P

Recent advances in hyperspectral remote sensing techniques and technologies allow us to more accurately identify larger range of crop species from airborne measurements. This study employs hyperspectral AISA Eagle VNIR imagery acquired with 9 nm spectral and 0.6 m spatial resolutions over a spectral range of 400 nm to 1000 nm. The area of study is the Taita hills in Kenya. Various crops are grown in this region basically for food and as an economic activity. The crops addressed are: maize, bananas, avocados, and sugarcane and mango trees. The main objectives of this study were to study what crop species can be distinguished from the cultivated population crops in the agricultural landscape and what feature space discriminates most effectively the spectral signatures of different species. Spectral Angle Mapper (SAM) algorithm together with some dissimilarity concepts was applied in this work. The spectral signatures for crops were collected using accurate field plot maps. Accuracy assessment was done using independent training vector data. We achieved an overall accuracy of 77% with a kappa value of 0.67. Various crops in different locations were identified and shown.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.