ISSN: 2475-7640

Journal de transplantation clinique et expérimentale

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Transplantation Pharmacology and Drug Development

Yuan A

Transplantation has emerged as a life-saving medical procedure for patients with organ failure and certain hematological disorders. However, the success of transplantation is critically dependent on the management of immunosuppression, prevention of graft rejection, and minimizing drug-related adverse effects. This abstract provides an overview of transplantation pharmacology and its pivotal role in the development of novel drugs and therapeutic strategies. Transplantation pharmacology encompasses a multifaceted approach to optimize patient outcomes. Immunosuppressive drugs, such as calcineurin inhibitors, corticosteroids, and mTOR inhibitors, form the cornerstone of post-transplantation care by suppressing the recipient’s immune system to prevent graft rejection. Nevertheless, these drugs are associated with a range of side effects, including nephrotoxicity, metabolic disturbances, and increased susceptibility to infections. Recent advancements in pharmacogenomics have enabled personalized dosing and medication selection, minimizing adverse effects while maintaining graft tolerance. Furthermore, drug development in transplantation has evolved to target specific immunological pathways. Biologics, including monoclonal antibodies and fusion proteins, have been designed to selectively modulate immune responses, thereby reducing the need for broad-spectrum immunosuppression. These targeted therapies hold promise for improving graft survival and minimizing the risk of infections and malignancies. In recent years, the field of transplantation pharmacology has also seen innovation in drug delivery systems. Controlled-release formulations and nanotechnology-based drug carriers offer the potential to enhance drug efficacy and reduce systemic toxicity. These advancements aim to strike a delicate balance between preventing graft rejection and preserving overall patient health.