Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Study on Measurement Method of Anaerobic Sludge Activity: Hydrogen Production

Yage Y, Rui X, Jianchang L, Huanyun D, Qiuxia W and Hadi NI

In this research finding, a new method is derived by adopting Maximum Specific Hydrogen Production Rate (Umax•H2) to measure the activities of anaerobic sludge for hydrogen production. With batch fermentation instrument under mesophilic (35°C ± 1°C) condition the research has been implemented and concluded. In this study, during the demonstration of experiments, for hydrogen fermentation as for the inoculum there three different active sludges are used and as for the feeding materials there kitchen wastes are tested. After resulting analysis it’s been showed that using the Maximum Specific Hydrogen Production Rate (Umax•H2) as a means to be an index or a method of sludge activity measurement-is reported as satisfactorily feasible and applicable. The Umax•H2 values of experimental groups for this research methodology are recorded as the following: Umax•H2(A)=30.24mL/gVSS•h, Umax•H2(B)=10.80mL/gVSS•h, Umax•H2(C)=18.05mL/gVSS•h. The Correlations between Umax•H2 and other parameters, such as cumulative hydrogen yield, fermentation period and degradation rate of TS are all remain Significant throughout the research. During experimental implementation, Pearson Correlation between Umax•H2 and fermentation period is reported as 0.997 achieving statistical Significance 0.047 (<0.05). Pearson Correlation between Umax•H2 and cumulative hydrogen yield is reported as 0.999 achieving a considerable trend toward Significance 0.022 (<0.05). Pearson Correlation between Umax•H2 and degradation rate of TS is reported as 0.999 Signifying a marginal trend toward Significance 0.027 (<0.05).