Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Ye Shui Zhang
Porous structure change of catalyst and coke formation from feedstock on fluid catalytic cracking (FCC) catalyst have studied by a more comprehensive set of analyses, include 2D, 3D analyses incorporate with carbon/coke characterization teniques. Carbon/coke formed from a heavy oil volatilization/decomposition with different oil-to-FCC catalyst ratio (1:3, 1:2, 1:1, 2:1 and 3:1) to simulate the aging of FCC catalyst in a continuous oil refinery. Carbon/coke was formed for all used FCC catalyst samples that is generally increases with the increase of oilto-FCC catalyst ratio. Coke formation has been correlated with the porosity change of the FCC catalyst, that more carbon/coke formed on the FCC catalyst due to the increment of oil-to-FCC catalyst ratio leads to the decrease of total pore volume and surface area. Zeolite is evenly distributed from the FCC catalyst particle centre to the exterior for all pristine and used FCC catalyst particles. The interior porous structure of single FCC catalyst particle is not affected by the coking. However, the exterior porous structure is completely disappear for all used FCC catalyst, that could cause by porous frame collapse and the coking clog the surface pores. The more comprehensive study of the structural change incorporate with the carbon/coke characterisation, which helps to understand the progressive degredation of FCC catalyst caused by porous structure change more in depth. Figure 1 is an example of 3 D tomogram and the radial distribution profiles of pristine FCC catalyst1. III. Reference: 1. Ye Shui Zhang, Xuekun Lu, et al., Structural change of fluid catalytic cracking catalysts study incorporate with coke characterization formed in heavy oil volatilization/decomposition, Submitted.