ISSN: 2157-2526

Journal de bioterrorisme et de biodéfense

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Indice source CAS (CASSI)
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Ouvrir la porte J
  • JournalSeek de génamique
  • Clés académiques
  • JournalTOC
  • RechercheBible
  • Infrastructure nationale du savoir de Chine (CNKI)
  • Annuaire des périodiques d'Ulrich
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catalogue en ligne SWB
  • Publons
  • Fondation genevoise pour l'enseignement et la recherche médicale
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Self-Organizing Sensor Node Sensing and the Constrained Shortest Path Problem Alternative for Biodefense

William Shinde

Numerous self-organizing systems can be found in nature that autonomously adapt to shifting circumstances without impairing the system's objectives. In order to conduct an energy-effective region sampling, we suggest a selforganizing sensor network that is modelled after actual systems. Using local data processing, mobile nodes in our network carry out certain rules. These principles give the nodes the ability to split the sampling duty so that they can self-organize to use less power overall and sample phenomena more accurately. The digital hormone-based model,which contains these regulations, offers a theoretical framework for analysing this group of systems. On cricket mote simulations, this model has been put into practise. Compared to a traditional model with fixed rate sampling, our findings show that the model is more efficient.

In transportation optimization, personnel scheduling, network routing, and other areas, the constrained shortest path (CSP) problem is frequently employed. As an NP-hard problem, it is still a matter of debate. The adaptive amoeba algorithm's fundamental mechanism is the foundation of the novel approach we provide in this paper. Two sections make up the suggested procedure. To resolve the shortest path problem in directed networks in the first section, we use the original amoeba approach. The Physarum algorithm and a rule with bio-inspired design.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.