Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Omali Y El-Khawaga
Methomyl carbamate is a pesticide widely used in the control of insects. The present work aims at studying the effect of tannic acid on the antioxidant system of methomyl-treated-mice. Swiss albino mice were intraperitoneally administered a single dose of methomyl (7 mg/Kg b.wt). Mice of another group were injected with tannic acid (20 mg/ Kg b.wt.) 3 hrs before methomyl intoxication. After 24 hours, methomyl exposure resulted in significant increase in lactic dehydrogenase activity (LDH). The antioxidant capacity of hepatic cells in terms of the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione (GSH) content was diminished. It appears that methomyl exerts its toxic effect via peroxidative damage to hepatic, renal and splenic cell membranes. Also, methomyl induced DNA damage in these organs as detected by alkaline filter elution technique. The distribution of methomyl in different organs of mice was detected by HPLC. Tannic acid administration prior to methomyl injection produced pronounced protective action against methomyl effects. It is observed that tannic acid enhances the endogenous antioxidant capacity of the cells by increasing the activities of SOD, CAT, GR and GST as well as increasing GSH content. The activity of LDH was decreased in liver and the damage of DNA was suppressed comparable to controls. In conclusion, this study concludes that tannic acid has a potential in mitigating most of the adverse effects induced by methomyl toxicity.