Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Sunayana Gupta
Due to increased pollution, greenhouse effect and global warming
resulting from power production using fossil fuels, there
is increased penetration of renewable energy sources into the
power production system. Over the last few years, solar radiation
has become a significant means of power production
using solar panels and the concept of microgrids has made
solar power an indispensable source of power in the distribution
system. The power production using solar energy is highly
variable and weather dependent which creates a power imbalance
into the system when it is penetrated without forecasting.
Therefore, solar power prediction plays a critical role in the
proper usage of solar energy while keeping the system stable.
For automating the power system the forecast needs to be very
accurate and thus, it is needed to improve the existing forecasting
techniques. In this study, we have proposed a solar radiation
scheme based on various meteorological factors, including
temperature, humidity, wind speed, and others and used this
data for building a machine learning model for prediction. We
introduced a hybrid model for prediction which optimizes the
parameters of Random Forest using Particle Swarm Optimization
technique. The results show empirically that the hybrid
RF-PSO model significantly improves the prediction accuracy
and reduces the MAE error.