ISSN: 2332-0702

Journal d'hygiène bucco-dentaire et de santé

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Mineral Trioxide Aggregate Use in Pediatric Dentistry: A Literature Review

Jihan Khan, Azza El-Housseiny and Najlaa Alamoudi

Mineral trioxide aggregate (MTA), is unique endodontic cement that was initially introduced as a material for root perforation repair. Over the years its use has expanded to include versatile applications in the field of pediatric dentistry. The purpose of this article was to conduct an updated review on mineral trioxide aggregate (MTA) and on its applications in the practice of pediatric dentistry.
Sources and data: Electronic databases, “PubMed”, “Cochrane Database” and “Google Scholar”, were used to identify relevant English-language studies and literature published in the period from 1993 to 2016. The scientific papers were then screened for their relevance to the intended objectives. A combination of the key search terms mineral trioxide aggregate, MTA, pulp therapy, clinical applications, and pediatric dentistry were used.
Study Selection: Abstracts and full text articles were used to identify studies describing the composition, manipulation, properties, types, and clinical features. In addition, controlled clinical trials of clinical applications and relevant laboratory research on its properties and safety were also included.
Conclusions: MTA is a unique material with various advantages. It has been used successfully by pediatric dentists in a variety of clinical applications. However, its drawbacks especially its high cost, discoloration potential, difficulty in handling, and long setting time cannot be overlooked. With the emergence of other novel tricalcium silicate based materials that overcome MTA’s key limitations, they are competing to be the next potential dentin substitutes for the various clinical application in which MTA has been used. Nevertheless, with the recent introduction of new improved MTA products, MTA-based materials are likely to yet remain at the heart of good pediatric dental practice for many years to come.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.