Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Ouvrir la porte J
  • JournalSeek de génamique
  • Clés académiques
  • RechercheBible
  • Infrastructure nationale du savoir de Chine (CNKI)
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Bibliothèque de revues électroniques
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publons
  • Fondation genevoise pour l'enseignement et la recherche médicale
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Machine learning enabled breast cancer detection using salivary

Masahiro Sugimoto

Metabolomics is one of omics technology enables comprehensive identification and quantification of hundreds of metabolites in various
samples. This technology has been used for the biomarker exploratory to discriminate various metabolic diseases, such as diabetes, psychiatric
diseases, chronic fatigue, and importantly, cancer. The biomarkers in a low-invasively available biofluid, e.g. blood, urine, and saliva, would
contribute to the early detection and monitoring of these diseases. Here, we tried to discriminate breast cancer patients from healthy controls
using non-invasively available saliva samples. Saliva samples were collected after 9 hours fasting and were immediately stored at −80 C. Salivary
hydrophilic metabolites were quantified using capillary electrophoresis-time-of-flight mass spectrometry and liquid chromatography with triple
quadrupole mass spectrometry. A multiple logistic regression (MLR) model and an alternative decision tree (ADTree)-based machine learning
method were used to develop discrimination models. The generalization abilities of these mathematical models were validated using crossvalidation
and resampling methods. Unstimulated saliva samples were collected from 101 patients with invasive carcinoma of the breast (IC), 23
patients with ductal carcinoma in situ (DCIS), and 42 healthy controls (C). Among quantified 260 metabolites, spermine showed the highest area
under the receiver operating characteristic curves [0.766; 95% confidence interval (CI) 0.671–0.840 to discriminate IC from C. The ADTree with an
ensemble approach showed higher accuracy (0.912; 95% CI 0.838–0.961, P < 0.0001), which was more accurate than MLR model. These data
with discrimination model would contribute to a non-invasive screening of breast cancers.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.