ISSN: 2155-9872

Journal des techniques analytiques et bioanalytiques

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Indice source CAS (CASSI)
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Base de données des revues académiques
  • Ouvrir la porte J
  • JournalSeek de génamique
  • JournalTOC
  • RechercheBible
  • Infrastructure nationale du savoir de Chine (CNKI)
  • Annuaire des périodiques d'Ulrich
  • Bibliothèque de revues électroniques
  • Recherche de référence
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Direction des chercheurs
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publons
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Investigation of MgAl as a Promising Catalyst for Water Splitting: A Materials Studio Study

Muhammad Zohaib Safdar

The electrolysis technique of water splitting has received a lot of interest as a potentially sustainable means of producing hydrogen. Improving the efficiency of water splitting systems relies heavily on the discovery of new catalysts that do not break the bank. In this work, we use the computational modeling program Materials Studio to explore the feasibility of MgAl as a catalyst for water splitting. The initial part of this research entails setting up the MgAl catalyst in Materials Studio using the right simulation methods. We investigate the electronic structure and catalytic characteristics of MgAl using several computational approaches, including density functional theory (DFT). To evaluate the catalyst’s efficiency in splitting water, we look at its electrical features, such as its band structure and density of states. The adsorption characteristics of MgAl towards water molecules and the consequent dissociation of water into hydrogen and oxygen are also explored. In order to comprehend the stability and kinetics of the water splitting process on the MgAl surface, the adsorption energies and reaction paths are computed. The goal of our extensive computational investigation is to shed light on the basic processes responsible for MgAl’s catalytic activity in water splitting events. Insights from this work will help rationally design more effective catalysts for water splitting and give useful direction for future experiments [2]. This study concludes with the results of a comprehensive computational analysis of the MgAl catalyst for water splitting performed in Materials Studio. We want to discover MgAl’s potential as a catalyst for water splitting applications by clarifying its electrical structure, adsorption characteristics, and reaction kinetics. The findings of this study will aid in the creation of sustainable hydrogen production systems, which in turn will help to progress renewable energy technology [3 ].