Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Chrisna Swart, Akile Khoza, Khaalid Khan, Stefan Le Roux, Anton du Plessis and Ben Loos
Objective: Autophagic maintenance of protein turnover for neuronal homeostasis is of critical importance. Although autophagy dysfunction contributes to neurodegenerative pathology, it remains unclear why certain brain regions are initially targeted compared to others. In Alzheimer's disease, the hippocampus appears to be most severely and initially affected compared to regions such as the cerebellum, which seem to be spared initially and are only targeted during later stages of neurodegeneration. Here we hypothesize that brain-region specific variations in basal autophagic activity may underlie sensitivity to proteotoxicity and contribute towards pathology. We investigated the abundance of key autophagic markers in different regions of the mouse brain to determine whether variations in basal autophagic activity may underlie brain-region susceptibility to neurodegeneration. Methods: Autophagic lysosomal degradation was inhibited using chloroquine in vivo and bafilomycin ex vivo. We investigated the accumulation of LC3-II and p62 protein levels in different regions of the mouse brain following inhibition using western blot analysis, immunofluorescence and micro-computed tomography imaging techniques. Results: Results indicate clear and robust variation of autophagic marker abundance between different regions of the mouse brain, both in our in vivo and ex vivo models. Increased protein levels were particularly observed in the cerebellum compared to the hippocampus region, suggesting distinct and region specific changes in autophagic activity. Conclusion: Functional specificity and metabolic demands of different brain regions may translate into differential autophagic activities, which may vary from one region to the next. Here we report regional variations of key autophagic markers between different regions of the mouse brain when autophagosome degradation was inhibited. These findings indicate enhanced basal autophagic activity in the cerebellum compared to the hippocampus. We therefore conclude that enhanced basal autophagic activity may render certain brain regions better equipped to deal with imbalances in protein degradation and that lower levels of basal autophagic activity may underlie regional susceptibility towards pathological decline.