Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Harry Gilbert*
The newest of these sciences, metabolomics, combines analytical biochemistry to evaluate the metabolic complement with sophisticated informatics, bioinformatics, and statistics. Because the chemistry of metabolites is variable, several analytical techniques must be used for their extraction, separation, detection, and quantification. The technologies have significantly advanced in the last ten years, enabling the simultaneous study of thousands of chemicals. However, this has brought about the current bottleneck in metabolomics, which is how to extract information from unprocessed data from numerous analytical platforms and conduct the necessary analysis in a biological context. The resulting high-density data sets need to go through a variety of preprocessing stages, such as peak detection, integration, filtering, normalization, and transformation, before any statistical analysis can be carried out on them. The goal of this article is to provide a comprehensive overview of the state of the art in metabolomics technologies from both an analytical and a bioinformatics perspective. We outline the difficulties that metabolomics researchers are currently facing and provide the readers some solutions.