ISSN: 2329-9053

Journal de recherche sur la pharmacie moléculaire et les processus organiques

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Importance of Fluorine and Fluorocarbons in Medicinal Chemistry and Oncology

Farid Menaa, Bouzid Menaa and Olga N Sharts

Carbon-Fluorine (C-F) can serve as a molecular tag for many applications in medicinal chemistry and oncology such as identification (i.e. screening), imaging (i.e. tracing) and analytical characterization. Thereby, fluorination, a chemical process to add a fluorine atom into a single molecule or a complex matrix materials (e.g. compounds) is largely used in the pharmaceutical field to confer some interesting properties to cancer drug compounds (e.g. enhancement of bioavailability). It is further more recently used for labelling some biological molecules of interest (i.e. peptides, nucleic acids) or nanomaterials (i.e. nanoparticles) which are of high importance for cancer chemoand biotherapy (e.g. immunotherapy) as well as for tumor (aka tumour)/cancer imaging (i.e. staging/prognosis, biodistribution, cancer diagnosis and therapy). Indeed, In addition to be easy-to-handle, efficient, soluble, smaller and cheaper, C-F bond is more stable than fluorescent dye, less toxic than fluorine radioisotopes, and less harmful than radio-waves. We have developed a patented technology called carbon-fluorine spectroscopy (CFS aka Spectro-Fluor®) along with methods and applications to not only specifically and sensitively detect C-F bonds in raw pure compound, complex materials but also to screen (e.g. drug discovery and drug security) as well as to trace F-molecules in vivo for improved medical care, particularly but not limited to the oncology sector (e.g. tumor/cancer imaging, development of new F- reagents, F-biomolecules, and anti-cancer agents). In this paper, we reviewed and discussed the major physical-chemical properties of C-F bond, the main applications of fluorocarbons as well as the state-of-art imaging technologies that use fluorine for clinical and research and development (R&D) oncology purposes (e.g. drug design, drug discovery, drug delivery and molecular imaging). An emphasis is put on the use of safer, unlabeled fluorinated molecules thanks to the emerging and promising CFS derived platform green technology that allows to reliably detecting unlabeled C-F molecules. Overall, we conclude that fluorine is a magical atom for molecular diagnosis and therapy that does not always need to be labelled.