Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Sun Dhriti Ghosh
The removal of iron in zinc hydrometallurgy results in the production of a significant amount of hazardous waste, which poses a serious and enduring environmental threat. As of late, an imaginative magnetite (Fe3O4) strategy for iron precipitation has been proposed. However, the oxidizing conditions in the pregnant leach solution from zinc hydrometallurgy cause Fe3O4's magnetic separation performance and phase composition to be sensitively altered.A variety of in-situ Fe3O4 samples with varying degrees of oxidation were created in this study. We found that oxidation didn't demolish the Fe expulsion and that all examples have a moderately high iron substance (>42.3%). In the meantime, although the samples' magnetic properties decreased from 32.31 to 6.56 emu/g, they were still able to be recovered (10.60 emu/g) by controlling the oxidation to some extent. As the degree of oxidation increases, there is a correlation between this and the phase transition of iron oxides. Raman and Fourier transform infrared spectroscopy measurements have also shown that the change in Fe-O bond length is the mechanism by which oxidation affects magnetic properties. This work gives another technique to the commonsense ramifications of the "attractive iron" rather than the magnetite precipitation strategy in zinc hydrometallurgy.