Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Exploring Inferential Statistical Methods in Library and Information Science

Dumond Albert

This article examines the applications and benefits of inferential statistical methods in Library and Information Science (LIS) research. While descriptive statistics provide a summary of data, inferential methods allow researchers to draw meaningful conclusions and make predictions based on sample data. In the context of LIS, inferential statistics find numerous applications, including user behavior analysis, evaluation of information services, collection assessment, and predictive modeling. By utilizing inferential techniques, researchers can go beyond descriptive analysis, generalize findings, and gain deeper insights into the phenomena under investigation. The adoption of inferential statistical methods in LIS research empowers researchers to make evidence-based decisions, predict user behavior, evaluate the impact of services, and contribute to the growth of cumulative knowledge within the field. However, researchers must consider challenges related to appropriate test selection, data quality, and addressing assumptions to ensure accurate and reliable results. Exploring and applying inferential statistical methods in LIS research will advance the field, enable evidence-based practices, and strengthen the knowledge base in Library and Information Science.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.