ISSN: 2161-0681

Journal de pathologie clinique et expérimentale

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Ouvrir la porte J
  • JournalSeek de génamique
  • JournalTOC
  • Annuaire des périodiques d'Ulrich
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Publons
  • Fondation genevoise pour l'enseignement et la recherche médicale
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Enhancing the Quality of Dental Radiographic Images: A Review on Panoramic and Periapical Radiograph Enhancement Techniques

Abdulbadea Altukroni, Omar Ezz El-Deen, Sadaf Jabeen, Sadaf Jabeen

Appropriate radiographic interpretation is critical for providing high-quality patient care. The radiograph’s wealth of data assists dentists in prescribing the best treatment option for their patients. Dental radiographs, particularly Ortho Pantomograms (OPGs) and periapical radiographs taken with low radiation doses, are frequently dark, low in contrast, and noisy. Image enhancement protocols are applied to radiographs to resolve these issues. However, selecting an appropriate technique is a tedious task, especially for the purpose of disease diagnosis. This study aims to survey standard image enhancement techniques for enhancing OPG and periapical radiographs. This study also investigates the potential image enhancement protocols conducted and what are the key factors involved in selecting a protocol for a certain type of dental disease. This review categorized the radiograph enhancement algorithm into three types: Contrast enhancement, frequency transforms and de noising filters, and deep learning. Extensive research has been conducted on the use of contrast enhancement and de noising filter algorithms for radiographs. The use of deep learning to enhance panoramic and periapical radiographs is still an emerging idea, and many potential results exist.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.