Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Diagnosis and Detection of Infected Tissue of Covid-19 Use of Pcr-Based In Northern Tanzania

Sarah Reemst

The COVID-19 epidemic has put the world's scientists to the test. The international community works to develop fresh ways as quickly as feasible for the diagnosis and treatment of COVID-19 patients [1]. Currently, a reverse transcription-polymerase chain reaction is a trustworthy tool for identifying infected patients [2]. The process is time- and money-consuming. Designing innovative methods is crucial as a result. In this study, we used X-ray pictures of the lungs to identify and diagnose COVID-19 patients using three deep learning-based approaches. We proposed two algorithms deep neural network (DNN) on the fractal characteristic of images and convolutional neural network approaches using the lung images directly for the diagnosis of the condition [3]. The classification of the results reveals that the proposed CNN architecture a new coronavirus disease first appeared in Wuhan, China, in December 2019, and it quickly spread over the world [4]. It has so far caused millions of confirmed illnesses and thousands of fatalities worldwide. Therefore, it is crucial to identify COVID-19 as soon as possible in order to stop its spread and lower its mortality [5]. Currently, reverse transcription polymerase chain reaction is the gold standard in the diagnosis of COVID-19 [6]. In this test, viral nucleic acid from sputum or a nasopharyngeal swab is found. This testing mechanism has a few drawbacks [7]. First off, this test requires particular materials that are not generally accessible. Additionally, this test takes a lot of time and has a poor true positive sensitivity rate [8]. DNNs may extract intelligence from the dataset, which results in superhuman performances in a variety of applications, thanks to the availability of enormous datasets and strong graphical processing units. Additionally, recent research has looked towards effective DNN architecture synthesis [9].

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.