Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Ouvrir la porte J
  • JournalSeek de génamique
  • Clés académiques
  • Bibliothèque de revues électroniques
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publons
  • Euro Pub
Partager cette page

Abstrait

Classification of Industrial Processes from Engineering Drawings Using Graph Neural Networks

Zivko Nikolov

While ample scanned engineering drawings area unit received each year, the net quotation corporations for custom mechanical components have knowledgeable about a billowing got to increase their process potency by substitution the presently manual examination method with associate degree automatic system. Previous work has used ancient, and data-driven computer-vision approaches to observe symbols and text info from the drawings.However, there lacks a unified framework to work out the associated producing processes as a crucial step for realizing associate degree automatic quoting system. During this paper, we tend to propose a process framework to mechanically verify the producing methodology acceptable to provide every queried engineering drawing, like lathing, flat solid bending, and edge. We tend to gift a data-driven framework that directly processes the formation pictures with a series of pre-processing steps and accurately determines the corresponding producing strategies for the queried spare a graph neural network. We tend to propose a completely unique line tracing algorithmic rule to rework advanced geometries in engineering drawings into vectorized line segments with bottom info loss.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.