Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Yikun Liu
Breast cancer is a prevalent and potentially life-threatening disease affecting women globally. Early and accurate detection of breast lesions through medical imaging, such as ultrasound, is crucial for effective treatment. In this study, we propose a novel approach for the classification of breast ultrasound images using a fuzzy-rank ensemble network. The proposed ensemble network combines the strengths of fuzzy logic and rank-based techniques to enhance the robustness and accuracy of classification. The network leverages fuzzy membership functions to capture the uncertainty inherent in ultrasound image interpretation, while the rank-based ensemble method aggregates predictions from multiple classifiers to improve overall performance. Experimental results on a comprehensive dataset demonstrate that the proposed fuzzy-rank ensemble network achieves superior classification performance compared to individual classifiers and traditional ensemble methods. This approach holds promise for improving the diagnostic capabilities of breast ultrasound image analysis, ultimately aiding clinicians in making more informed decisions and potentially contributing to enhanced patient outcomes.