Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Cervical Cancer Diagnosis Using Data Mining Algorithm

Johnson Gurneey

A class of data mining techniques can be used to accurately diagnose cervical cancer, which has significant practical implications. In particular, the beneficial information present in a sizable amount of medical data may not only subtly advance medical technology but also, in the future, aid in the detection of cervical cancer. In order to collect and analyse picture information, this study enhances the data mining algorithm and integrates image recognition and data mining technologies. Additionally, this study fully exploits the image data to segment the cervical cancer cell image, choose the feature vector in accordance with the features of the cervical cancer cell, and create the classifier using the statistical classification approach. The test results demonstrate that this system’s automatic recognition and supplementary diagnosis effects are both good. As a result, it can be confirmed in clinical settings throughout the follow-up.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.