Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Biodiesel: Latest Perspective on Production Technology and Prospects

Yunjan Yang

Since the previous two decades, biodiesel has gained popularity as a possible alternative to fossil diesel. However, one of the primary issues with the industry’s method of producing biodiesel is the inability of homogenous alkali catalysts to be recycled and the waste that is produced as a result of the water washing that follows. Due to their distinctive qualities, including non-volatility, great solubility for a wide range of organic and inorganic compounds, structural tenability, environmental friendliness, and wide liquid temperature range, ionic liquids are one of the finest alternatives to alkali catalysts. However, their use has been constrained by their high viscosity and challenging recovery. To get around these problems, heterogenization of ionic liquids on solid supports has recently been proposed. When it comes to creating sturdy supports with high porosity and specific surface area, nanoporous materials have excelled. The design of ionic liquids deposited on nanoporous materials as catalysts for the manufacture of biodiesel is reviewed in this research. The application of this kind of catalysts for improving reaction conditions was the main focus. Also covered were difficulties and chances for enhancing the entire production process while these catalysts are present. Despite the fact that numerous ionic liquids supported by nanoporous materials produced substantial biodiesel yields, their significantly greater cost in comparison to traditional catalysts remained a considerable obstacle.