Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Veerendra Singh, P K Banerjee, S K Tripathy, V K Saxena and R Venugopal
Grinding consumes around 2% of the energy produced in the world but existing methods of milling are very inefficient and use only 5% of the input energy for real size reduction rest is consumed by machine itself. Chrome ores are comminute, filtered, pelletized and sintered to use into submerged arc furnace for ferrochrome production. Variation in ore properties affects the particle size distribution during milling. Artificial neural network based model is developed to predict the particle size distribution of ball mill product using grinding data available for difference in grindability of Sukinda chromite ores. Input variables for model were ball size, ball load, ball-ore ratio, grinding time. Output was particle size distribution (+75 μm, -75 μm, +38 μm; -38 μm). Three different kinds of mathematical models have been compared to predict the particle size distribution. Finally a neural network based model was found most accurate. Dynamic artificial neural network model does not require any material constant and optimizes the mathematical correlation with better accuracy in a dynamic process. This methodology can be used to develop an online system to predict the ball mill performance to improve the performance of grinding circuit in mineral, metal and cement industry.