ISSN: 2168-9806

Journal de la métallurgie des poudres et des mines

Accès libre

Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Al2O3 Inclusions in Powder Metallurgy Super Alloys: Deformation Mechanism and Quantitative Characterization

Yefei Feng

SEM and quasi-in situ Micronano-CT were used to evaluate the evolution law of the three-dimensional form and size of Al2O3 inclusions in FGH96 powder metallurgy superalloy during the hot iso-static pressing (HIP), hot extrusion (HEX), and hot isothermal forging (HIF) processes. Quantitative analysis was used to determine how inclusion size changed during several stages, characterise their three-dimensional (3D) morphology, and propose a deformation process [1]. According to the findings, the inclusions in the powder stage had a long stripe or plate-like form. Al2O3 inclusions were mechanically linked to the alloy matrix during HIP, and the matrix's chemical make-up, shape, and size were all left unaltered. Al2O3 inclusions were seen in HEX Shear stress caused the object to break and stretch into a chain shape [2]. The quantitative link between original inclusion size, extrusion ratio, and inclusion size after extrusion was determined. For the first time during HIF, the relationship between a single inclusion's 3D shape, size, orientation, and deformation during forging compression was quantitatively described by quasi in-situ micronano-CT. The aforementioned evolution law offers a conceptual framework and practical support for raising the powder turbine disk's purity level.