Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Indexé dans
  • Index Copernic
  • Google Scholar
  • Sherpa Roméo
  • Ouvrir la porte J
  • JournalSeek de génamique
  • Clés académiques
  • RechercheBible
  • Infrastructure nationale du savoir de Chine (CNKI)
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Bibliothèque de revues électroniques
  • Recherche de référence
  • Université Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publons
  • Fondation genevoise pour l'enseignement et la recherche médicale
  • Euro Pub
  • ICMJE
Partager cette page

Abstrait

Advanced machine learning in bioprocess development

Maximilian Krippl

With an increasing demand for biopharmaceuticals in general and more and more players entering the biosimilar market, there is an increased focus on process development and control to stay ahead of the competition. However, true process understanding is often limited due to the high complexity of the system hindering the usage of simple mechanistic equations for process description. Further, long process times and large amounts of critical process parameters (CPPs) limit the number of optimization experiments for a full design space description.

Advanced machine learning methods, such as hybrid models, help to get more information from fewer experiments by bridging the gap between mechanistic understanding and underlying unknown mechanism hidden in the data. Hence, the combination of well-understood, mechanistic equations and data-driven algorithms increases the predictive capability while simultaneously reducing the number of experiments required to understand, model, and predict bioprocesses.

Within his presentation, both and upstream and downstream hybrid modeling approach will be covered to demonstrate both the potential and superior extrapolation capability of such models. In an E. coli upstream fed-batch process a hybrid model was applied to better describe and understand the impact of the critical process parameters on the critical quality attributes in a time-resolved manner. This approach enabled intra-process changes allowing us to screen a specific design space in 50% of the time. In the downstream tangential flow filtration showcase, the superior performance of a hybrid model approach will be demonstrated. Here a full process model could be generated within a single working day, enabling accurate flux predictions over the full process length. Further, the superior behavior of the hybrid model compared to the film theory will also be demonstrated.