Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

Acute Effects of Neural Mobilization and Static Hamstring Stretching on Multi-joint Flexibility in a Group of Young Adults

Ben Curtis, Tim Retchford, Kinda Khalaf and Herbert F. Jelinek

Neural tension has been proposed to be a factor influencing multi-joint movements such as sprinting, kicking and bending to pick up an object. Neural mobilizations have been demonstrated to increase range of motion in one joint, however the effect on flexibility across multiple joints has not been described nor compared to the traditional static stretch response. The aim of this study was to compare the effect on flexibility across multiple joints of neural mobilization to the traditional static stretch response. Fifty-two young adults (F = 32, M = 20; aged 18 – 25 years) were recruited from Charles Sturt University and a NE Victorian cross country ski camp and randomly allocated to receive a neural mobilization or static hamstring stretching intervention. The neural mobilization group received three, thirty-second passive Grade III neural mobilizations and the static stretch group received three, thirty-second passive static hamstring stretches. Effects of intervention were evaluated using the Mann-Whitney U test for unmatched samples. Pre-post difference in flexibility/range of motion was assessed using the Wilcoxon Signed Ranks test for matched samples. Spearman’s Rank Order Correlation analysis was performed to assess correlations between participant characteristics and the change in flexibility following intervention. Post-intervention toe touch distance increased significantly following neural mobilization (median change = 22.5 mm; p < 0.01) and static hamstring stretching (median change = 25.0 mm; p < 0.01). There was no significant difference between the effects of either intervention on toe touch distance. A single session of neural mobilization produces a similar increase in toe touch distance to static hamstring range of motion, suggesting that neural tension may be a factor influencing multijoint range of motion.