Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Zhuo Yao, Heng Wei and Harikishan Perugu
Household travel related Greenhouse Gas (GHG) emissions have been identified as one of the major contributors to greenhouse gas emissions. Many studies have suggested that household trips and their associated GHG footprints are pertinent in great part to land use type and socioeconomic of the household. The current practice of GHGs emission laws and regulations recommend using outputs from travel demand model for GHG and other regulated emission analysis. Conventional travel demand forecasting models are aimed at conducting a macroscopic simulation analysis at an area or regional level of the roadway network but it is unable to generate traffic flow operational data at a microscopic level such as speed, acceleration or deceleration at a fine spatiotemporal scale. On the other hand, the household travel GHG emissions, similar to the household location itself, are spatially and temporally dependent. The spatial factors’ role in the modeling of the household travel GHG footprint is unclear. To address the above gaps, this research proposes a robust household travel GHG quantification method with spatial information considered. By utilizing the greater Cincinnati GPS household travel survey data, household travel is accurately mapped to its origin and linked to the household’s socio-economics and demographic characteristics. The regional traffic analysis zone-based GHG emissions generated from the sampled households are, therefore, spatially modeled by using spatial regression models that originated from econometrics. The results showed that the Spatial Durbin Error model fits the data better comparing to other candidate models.