Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.
Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs
Zia-ul Haq
Neonatal screening programs have become an essential component of modern healthcare, aiming to identify and treat congenital and metabolic disorders in newborns before symptoms manifest. This abstract provides a concise overview of the current state of neonatal screening, emphasizing recent advances and future directions in the field. Neonatal screening involves the systematic collection of blood or tissue samples from newborns to detect a range of congenital and metabolic disorders, including phenylketonuria (PKU), congenital hypothyroidism, cystic fibrosis, and sickle cell disease, among others. Early detection of these conditions allows for prompt intervention, significantly improving long-term outcomes.
Advancements in neonatal screening include the integration of new technologies, such as tandem mass spectrometry (MS/MS) and next-generation sequencing (NGS), which have expanded the scope of detectable disorders. These technologies offer higher sensitivity and specificity, enabling the identification of rare and previously undetectable conditions. Furthermore, the expansion of screening panels and the development of point-of-care testing have streamlined the screening process, reducing turnaround times and enhancing accessibility. Implementation of these advances in screening has resulted in earlier diagnosis and intervention, reducing the burden of disease on affected individuals and healthcare systems.
Future directions in neonatal screening involve continued research into the identification of novel biomarkers and genetic markers, as well as the exploration of non-invasive screening methods. Additionally, ongoing efforts to standardize and harmonize screening protocols across regions aim to ensure equitable access to early detection and intervention for all newborns.