Notre groupe organise plus de 3 000 séries de conférences Événements chaque année aux États-Unis, en Europe et en Europe. Asie avec le soutien de 1 000 autres Sociétés scientifiques et publie plus de 700 Open Access Revues qui contiennent plus de 50 000 personnalités éminentes, des scientifiques réputés en tant que membres du comité de rédaction.

Les revues en libre accès gagnent plus de lecteurs et de citations
700 revues et 15 000 000 de lecteurs Chaque revue attire plus de 25 000 lecteurs

Abstrait

A comparison of Traditional Machine Learning with Early Diagnosis of Breast Cancer

Gonzales Martinez

Breast cancer, a prevalent global health issue, demands timely diagnosis for effective treatment. This article delves into the realm of early breast cancer detection, comparing traditional diagnostic methods with the innovative application of machine learning (ML) techniques. While traditional methods such as mammography and histopathological analysis have been instrumental, ML’s potential to enhance accuracy and efficiency in early diagnosis is gaining prominence. This article evaluates the juxtaposition of these methodologies, highlighting ML’s contributions in image analysis, risk assessment, pathology analysis, data fusion, and pattern recognition. By examining the strengths, challenges, and potential synergies between traditional and ML approaches, this article underscores the evolving landscape of breast cancer diagnosis.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié.